Tahap pembentukan endospora





 

Tahap pembentukan endospora (The stages of endospore formation)

Properties of Endospores
      1. Core- The core is the spore protoplast. It contains a complete nucleus (chromosome), all of the components of the protein-synthesizing apparatus, and an energy-generating system based on glycolysis. Cytochromes are lacking even in aerobic species, the spores of which rely on a shortened electron transport pathway involving flavoproteins. A number of vegetative cell enzymes are increased in amount (eg, alanine racemase), and a number of unique enzymes are formed (eg, dipicolinic acid synthetase). Spores contain no reduced pyridine nucleotides or ATP. The energy for germination is stored as 3-phosphoglycerate rather than as ATP. The heat resistance of spores is partly attributable to their dehydrated state and in part to the presence in the core of large amounts (5–15% of the spore dry weight) of calcium dipicolinate, which is formed from an intermediate of the lysine biosynthetic pathway (see Figure 6-18). In some way not yet understood, these properties result in the stabilization of the spore enzymes, most of which exhibit normal heat lability when isolated in soluble form. 
      2. Spore wall—The innermost layer surrounding the inner spore membrane is called the spore wall. It contains normal peptidoglycan and becomes the cell wall of the germinating vegetative cell. 
     3.Cortex—The cortex is the thickest layer of the spore envelope. It contains an unusual type of peptidoglycan, with many fewer cross-links than are found in cell wall peptidoglycan. Cortex peptidoglycan is extremely sensitive to lysozyme, and its autolysis plays a role in spore germination.
       4. Coat—The coat is composed of a keratin-like protein containing many intramolecular disulfide bonds. The impermeability of this layer confers on spores their relative resistance to antibacterial chemical agents.
      5. Exosporium—The exosporium is composed of proteins, lipids, and carbohydrates. It consists of a paracrystalline basal layer and a hairlike outer region. The function of the exosporium is unclear. Spores of some Bacillus species (eg, B anthracis and B cereus) possess an exosporium, but other species (eg, B atrophaeus) have spores that lack this structure.

Proses perkecambahan (germinasi) terjadi dalam tiga tahap: aktivasi, inisiasi, dan hasil.

1. Activation—Most endospores cannot germinate immediately after they have formed. But they can germinate after they have rested for several days or are first activated in a nutritionally rich medium by one or another agent that damages the spore coat. Among the agents that can overcome spore dormancy are heat, abrasion, acidity, and compounds containing free sulfhydryl groups.
2. Initiation—After activation, a spore will initiate germination if the environmental conditions are favorable. Different species have evolved receptors that recognize different effectors as signaling a rich medium: Thus, initiation is triggered by l-alanine in one species and by adenosine in another. Binding of the effector activates an autolysin that rapidly degrades the cortex peptidoglycan. Water is taken up, calcium dipicolinate is released, and a variety of spore constituents are degraded by hydrolytic enzymes.
3. Outgrowth—Degradation of the cortex and outer layers results in the emergence of a new vegetative cell consisting of the spore protoplast with its surrounding wall. A period of active biosynthesis follows; this period, which terminates in cell division, is called outgrowth. Outgrowth requires a supply of all nutrients essential for cell growth.

      Sumber buku: Jawetz, Melnick, & Adelberg’s Medical Microbiology Twenty-Sixth Edition

Komentar

Postingan populer dari blog ini

Laporan Praktikum: Pembuatan Kombucha

PEMBUATAN WINE (ANGGUR)

KERAGAMAN JENIS BENTHOS DI PERAIRAN WISATA BAHARI DESA TANJUNG TIRAM KECAMATAN MORAMO UTARA KABUPATEN KONAWE SELATAN PROVINSI SULAWESI TENGGARA